1,250 research outputs found

    Capability of Plant Growth-Promoting Rhizobacteria (PGPR) for producing indole acetic acid (IAA) under extreme conditions

    Get PDF
    Plant Growth-Promoting Rhizobacteria (PGPR) inhabiting the area around the plant roots or in plant tissues and stimulate plant growth directly or indirectly. Synthesis of the phytohormone auxin indole-3-acetic acid (IAA) is one of the direct effects of PGPR on plant growth. This study aimed to isolate and screen IAA producing bacteria from soil and study the impacts of the alkalinity and salinity on IAA production and total antioxidant activity of the highly IAA producing strain. From the fifteen isolates tested, six were selected as efficient IAA producer, from which one isolate was highly IAA producer. The highly producing isolate was identified based on molecular characteristics using 16S rRNA. The sequence analysis showed 99% similarity with Bacillus subtilis from GenBank data base. The strain yielded IAA in a wide range of pH (5-9), giving its maximum IAA production at pH 8. High IAA concentration was also observed in the presence of 0.5% and 1% NaCl in comparison with control (with no NaCl). Furthermore, the results indicated that, total antioxidant was increased in acidic (pH 5 and pH 6) and alkaline (pH 8) media, as well as in salinity up to 2%. This study could be stated as the prospective of IAA producing bacterial isolate in the field, as a result, using it as alternative valuable biofertilizer. DOI: http://dx.doi.org/10.5281/zenodo.141279

    Orbital and physical parameters of eclipsing binaries from the All-Sky Automated Survey catalogue - VI. AK Fornacis - a rare, bright K-type eclipsing binary

    Full text link
    We present the results of the combined photometric and spectroscopic analysis of a bright (V=9.14), nearby (d=31 pc), late-type detached eclipsing binary AK Fornacis. This P=3.981 d system has not been previously recognised as a double-lined spectroscopic binary, and this is the first full physical model of this unique target. With the FEROS, CORALIE and HARPS spectrographs we collected a number of high-resolution spectra in order to calculate radial velocities of both components of the binary. Measurements were done with our own disentangling procedure and the TODCOR technique, and were later combined with the photometry from the ASAS and SuperWASP archives. We also performed an atmospheric analysis of the component spectra with the Spectroscopy Made Easy (SME) package. Our analysis shows that AK For consists of two active, cool dwarfs having masses of M1=0.6958±0.0010M_1=0.6958 \pm 0.0010 and M2=0.6355±0.0007M_2=0.6355 \pm 0.0007 M_\odot and radii of R1=0.687±0.020R_1=0.687 \pm 0.020 and R2=0.609±0.016R_2=0.609 \pm 0.016 R_\odot, slightly less metal abundant than the Sun. Parameters of both components are well reproduced by the models. AK For is the brightest system among the known eclipsing binaries with K or M type stars. Its orbital period is one of the longest and rotational velocities one of the lowest, which allows us to obtain very precise radial velocity measurements. The precision in physical parameters we obtained places AK For among the binaries with the best mass measurements in the literature. It also fills the gap in our knowledge of stars in the range of 0.5-0.8 M_\odot, and between short and long-period systems. All this makes AK For a unique benchmark for understanding the properties of low-mass stars.Comment: 9 pages, 11 figures, 3 tables, accpeted for publication in A&
    corecore